Preliminary communication

A rapid synthesis of *p*-nitrophenyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside*

KHUSHI L. MATTA, CONRAD F. PISKORZ and JOSEPH J. BARLOW

Department of Gynecology, Roswell Park Memorial Institute, Buffalo, NY 14263 (U.S.A.)

(Received December 30th, 1980; accepted for publication, January 16th, 1981)

Recently, we reported² the use of synthetic p-nitrophenyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside as a substrate for the rapid detection of α -L-fucosidase having a stringent substrate-specificity for the α -(1 \rightarrow 2)-linkage. According to Chester et al.³, an α -(1 \rightarrow 2)-fucosyltransferase present in human serum acts on aryl β -D-galactosides to give the corresponding aryl 2-O- α -L-fucopyranosyl- β -D-galactopyranosides. Indeed, the availability of the title disaccharide and of o-nitrophenyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside as reference compounds has led to the development of a facile, assay procedure for this unique, human (1 \rightarrow 2)- α -L-fucosyltransferase⁴. We now describe a rapid synthesis of the title compound.

In our previous approach for the synthesis of the desired compound, p-nitrophenyl 3,4,6-tri-O-acetyl-\(\beta\)-galactopyranoside in anhydrous acetonitrile was treated with 2,3,4-τri-O-acetyl-α-L-fucopyranosyl bromide (2) in the presence of mercuric cyanide, to give a mixture of p-nitrophenyl 3,4,6-tri-O-acetyl-2-O-(2,3,4-tri-O-acetyl-α-Lfucopyranosyl)-\(\textit{B-D-galactopyranoside}\) and \(p\)-nitrophenyl 3,4,6-tri-\(O\)-acetyl-2-\(O\)-(2,3,4tri-O-acetyl-β-L-fucopyranosyl)-β-D-galactopyranoside². The anomeric mixture was separated by preparative, silica-gel chromatography. Reaction of p-nitrophenyl 6-Obenzoyl-3,4-O-isopropylidene-β-D-galactopyranoside with 2 under similar conditions. also gave a mixture of the corresponding α . β -disaccharide derivatives, and preparative. silica-gel chromatography had to be applied for their separation⁵. However, we had reported earlier⁶ that reaction of the readily accessible 1,3,4,6-tetra-O-acetyl-α-Dgalactose (1) and glycosyl halide 2 gave a mixture of anomers (3 and 5) which could be effectively separated by fractional recrystallization, and additional amounts of the α anomer 3 could be obtained by silica chromatography of the remaining mother liquor on a column of silica gel. Thus, for the large-scale preparation of the disaccharide, acetate 3 was considered to be a suitable starting-material.

Recently, use of bromotrimethylsilane for the preparation of a glycosyl bromide has been recommended⁷. In our hands, treatment of 3 with an excess of this reagent in benzene gave a mixture of 3,4,6-tri-O-acetyl-2-O-(2,3,4-tri-O-acetyl- α -L-fucopyranosyl)- α -D-galactopyranosyl bromide (4) and starting material 3. However, treatment of com-

^{*}Synthetic Studies in Carbohydrates, Part XVII. For Part XVI, see ref. 1.

pound 3 in anhydrous dichloromethane with hydrogen bromide in acetic acid gave the desired bromide 4 as the main product.

Thus, in a typical experiment, a solution of 3 (0.2 g) in anhydrous dichloromethane (10 ml) was treated with hydrogen bromide in acetic acid (4 ml) and the mixture was kept for 4 h at 0°, diluted with dichloromethane (50 ml), successively washed with a cold, saturated solution of sodium hydrogencarbonate and cold water (until neutral), dried (sodium sulfate), suspension filtered, and the filtrate evaporated, to give 0.2 g of 4 as a syrup. T.l.c. in 3:1 benzene—acetone showed a major spot, free from starting material but contaminated with some minor impurities.

A solution of bromide 4 (0.2 g) in 2-propanol (4 ml) and dichloromethane (1 ml) was stirred overnight with Amberlyst A-26 p-nitrophenoxide⁸ (0.5 g), the suspension diluted with dichloromethane (10 ml), and filtered, and the filtrate evaporated, to give a syrup which, on treatment with ether—pentane, afforded 6 as amorphous material (0.2 g), $[\alpha]_D - 108^{\circ}$ (c 1, CHCl₃); lit. $[\alpha]_D - 113^{\circ}$. The i.r.- and n.m.r.-spectra were identical with those of our previous samples, prepared by the aforementioned methods. Deacylation of 6 in methanol in the presence of triethylamine, in the usual way, gave crystalline p-nitrophenyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside (7), identical with a previous sample. Thus, the present method provides an efficient synthesis of the title compound. Moreover, preparation of bromide 4 affords an intermediate of great potential importance.

REFERENCES

- 1 S. S. Rana, J. J. Barlow, and K. L. Matta, Carbohydr. Res., 91 (1981) 149-157.
- 2 R. R. DiCioccio, C. F. Piskorz, G. Salamida, J. J. Barlow, and K. L. Matta, *Anal. Biochem.*, in press.
- 3 M. A. Chester, A. D. Yates, and W. M. Watkins, Eur. J. Biochem., 69 (1976) 583-592.
- 4 R. A. DiCioccio, J. J. Barlow, and K. L. Matta, Clin. Chim. Acta, 108 (1980) 41-48.
- 5 K. L. Matta, unpublished results.
- 6 K. L. Matta, Carbohydr. Res., 31 (1973) 410-412.
- 7 J. Thiem and B. Meyer, Chem. Ber., 113 (1980) 3075-3085.
- 8 T. Iversen and R. Johansson, Synthesis, (1979) 823-824.